Na-Doping Effects on Thermoelectric Properties of Cu2-xSe Nanoplates

نویسندگان

  • Yingshi Jin
  • Mi-Kyung Han
  • Sung-Jin Kim
چکیده

For this work, a β-phase Cu2−xSe nanowire and nanoplate, and a Na-doped Cu2−xSe nanoplate were successfully synthesized using solution syntheses. The morphologies of the Cu2−xSe nanowire and nanoplate could be easily controlled by changing the synthetic condition. The Na-doped Cu2−xSe nanoplate was prepared by a simple treatment of the Cu2−xSe nanoplate with a sodium hydroxide-ethylene glycol solution. The nanopowders were then consolidated to bulk materials using spark plasma sintering (SPS). The phase structure and the microstructure of all of the samples were checked using X-ray diffraction (XRD), high-resolution transmission electron microscope (HR-TEM), and scanning electron microscope (SEM) analyses. The thermoelectric transport properties, such as the electrical conductivity, Seebeck coefficient, carrier concentration, carrier mobility, and thermal conductivity, were measured at temperature ranges from 323 to 673 K. The results show that Na played two important roles: one is reducing the carrier concentration, thereby improving the Seebeck coefficient, the other is reducing the thermal conductivity. Overall, the maximum thermoelectric figure of merit (ZT) of 0.24 was achieved at 673 K in the Na-doped Cu2−xSe nanoplate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aqueous preparation of surfactant-free copper selenide nanowires.

Uniform surfactant-free copper selenide (Cu2-xSe) nanowires were prepared via an aqueous route. The effects of reaction parameters such as Cu/Se precursor ratio, Se/NaOH ratio, and reaction time on the formation of nanowires were comprehensively investigated. The results show that Cu2-xSe nanowires were formed through the assembling of CuSe nanoplates, accompanied by their self-redox reactions....

متن کامل

Thermoelectric properties of copper chalcogenide alloys deposited via the solution-phase using a thiol–amine solvent mixture

There has been a growing interest in solution-phase routes to thermoelectric materials due to the decreased costs and novel device architectures that these methods enable. Many excellent thermoelectric materials are metal chalcogenide semiconductors and the ability to create soluble metal chalcogenide semiconductor precursors using thiol–amine solvent mixtures was recently demonstrated by other...

متن کامل

Superior intrinsic thermoelectric performance with zT of 1.8 in single-crystal and melt-quenched highly dense Cu2-xSe bulks

Practical applications of the high temperature thermoelectric materials developed so far are partially obstructed by the costly and complicated fabrication process. In this work, we put forward two additional important properties for thermoelectric materials, high crystal symmetry and congruent melting. We propose that the recently discovered thermoelectric material Cu2-xSe, with figure of meri...

متن کامل

Influence of Compensating Defect Formation on the Doping Efficiency and Thermoelectric Properties of Cu2‐ySe1−xBrx

The superionic conductor Cu2−δSe has been shown to be a promising thermoelectric at higher temperatures because of very low lattice thermal conductivities, attributed to the liquid-like mobility of copper ions in the superionic phase. In this work, we present the potential of copper selenide to achieve a high figure of merit at room temperature, if the intrinsically high hole carrier concentrat...

متن کامل

Tuning the Localized Surface Plasmon Resonance in Cu2–xSe Nanocrystals by Postsynthetic Ligand Exchange

Nanoparticles exhibiting localized surface plasmon resonances (LSPR) are valuable tools traditionally used in a wide field of applications including sensing, imaging, biodiagnostics and medical therapy. Plasmonics in semiconductor nanocrystals is of special interest because of the tunability of the carrier densities in semiconductors, and the possibility to couple the plasmonic resonances to qu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017